The Existence of a Nontrivial Solution for a -Kirchhoff Type Elliptic Equation in
نویسندگان
چکیده
منابع مشابه
Existence of Nontrivial Solution for a Nonlocal Elliptic Equation with Nonlinear Boundary Condition
متن کامل
On the Existence of Solutions of a Nonlocal Elliptic Equation with a p-Kirchhoff-Type Term
Questions on the existence of positive solutions for the following class of elliptic problems are studied: − M ‖u‖p1,p 1,p Δpu f x, u , in Ω, u 0, on ∂Ω, where Ω ⊂ R is a bounded smooth domain, f : Ω ×R → R and M : R → R, R 0,∞ are given functions. Copyright q 2008 F. J. S. A. Corrêa and R. G. Nascimento. This is an open access article distributed under the Creative Commons Attribution License,...
متن کاملEXISTENCE OF MULTIPLE NONTRIVIAL SOLUTIONS FOR A p-KIRCHHOFF TYPE ELLIPTIC PROBLEM INVOLVING SIGN-CHANGING WEIGHT FUNCTIONS
This paper deals with a p-Kirchhoff type problem involving signchanging weight functions. It is shown that under certain conditions, by means of variational methods, the existence of multiple nontrivial nonnegative solutions for the problem with the subcritical exponent are obtained. Moreover, in the case of critical exponent, we establish the existence of the solutions and prove that the ellip...
متن کاملthe investigation of the relationship between type a and type b personalities and quality of translation
چکیده ندارد.
Existence of a positive solution for a p-Laplacian equation with singular nonlinearities
In this paper, we study a class of boundary value problem involving the p-Laplacian oprator and singular nonlinearities. We analyze the existence a critical parameter $lambda^{ast}$ such that the problem has least one solution for $lambdain(0,lambda^{ast})$ and no solution for $lambda>lambda^{ast}.$ We find lower bounds of critical parameter $lambda^{ast}$. We use the method ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2013
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2013/281949